Linearized biogeography-based optimization with re-initialization and local search

نویسندگان

  • Dan Simon
  • Mahamed G. H. Omran
  • Maurice Clerc
چکیده

Biogeography-based optimization (BBO) is an evolutionary optimization algorithm that uses migration to share information among candidate solutions. One limitation of BBO is that it changes only one independent variable at a time in each candidate solution. In this paper, a linearized version of BBO, called LBBO, is proposed to reduce rotational variance. The proposed method is combined with periodic re-initialization and local search operators to obtain an algorithm for global optimization in a continuous search space. Experiments have been conducted on 45 benchmarks from the 2005 and 2011 Congress on Evolutionary Computation, and LBBO performance is compared with the results published in those conferences. The results show that LBBO provides competitive performance with state-of-the-art evolutionary algorithms. In particular, LBBO performs particularly well for certain types of multimodal problems, including high-dimensional real-world problems; LBBO is insensitive to whether or not the solution lies on the search domain boundary; LBBO is insensitive to whether or not the global optimum lies in a wide or narrow basin; and LBBO is insensitive to whether or not the global optimum lies within or outside the initialization domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyper-Heuristic Based on Iterated Local Search Driven by Evolutionary Algorithm

This paper proposes an evolutionary-based iterative local search hyper-heuristic approach called Iterated Search Driven by Evolutionary Algorithm Hyper-Heuristic (ISEA). Two versions of this algorithm, ISEAchesc and ISEA-adaptive, that differ in the re-initialization scheme are presented. The performance of the two algorithms was experimentally evaluated on six hard optimization problems using ...

متن کامل

Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...

متن کامل

A hybrid bio-geography based optimization for permutation flow shop scheduling

The permutation flow shop problem (PFSSP) is an NP-hard problem of wide engineering and theoretical background. In this paper, a biogeography based optimization (BBO) based on memetic algorithm, named HBBO is proposed for PFSSP. Firstly, to make BBO suitable for PFSSP, a new LRV rule based on random key is introduced to convert the continuous position in BBO to the discrete job permutation. Sec...

متن کامل

Participative Biogeography-Based Optimization

Biogeography-Based Optimization (BBO) has recently gained interest of researchers due to its simplicity in implementation, efficiency and existence of very few parameters. The BBO algorithm is a new type of optimization technique based on biogeography concept. This population-based algorithm uses the idea of the migration strategy of animals or other species for solving optimization problems. t...

متن کامل

Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over

Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 267  شماره 

صفحات  -

تاریخ انتشار 2014